Bayesian elastic net based on empirical likelihood

نویسندگان

چکیده

We propose a Bayesian elastic net that uses empirical likelihood and develop an efficient tuning of Hamiltonian Monte Carlo for posterior sampling. The proposed model relaxes the assumptions on identity error distribution, performs well when variables are highly correlated, enables more straightforward inference by providing distributions regression coefficients. method implemented in overcomes challenges distribution lacks closed analytic form its domain is nonconvex. leapfrog parameter algorithm likelihood. also show coefficients asymptotically normal. Simulation studies real data analysis demonstrate advantages prediction accuracy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Multiple Bayesian Elastic Net

We propose the multiple Bayesian elastic net (abbreviated as MBEN), a new regularization and variable selection method. High dimensional and highly correlated data are commonplace. In such situations, maximum likelihood procedures typically fail—their estimates are unstable, and have large variance. To address this problem, a number of shrinkage methods have been proposed, including ridge regre...

متن کامل

Bayesian computation via empirical likelihood.

Approximate Bayesian computation has become an essential tool for the analysis of complex stochastic models when the likelihood function is numerically unavailable. However, the well-established statistical method of empirical likelihood provides another route to such settings that bypasses simulations from the model and the choices of the approximate Bayesian computation parameters (summary st...

متن کامل

Bayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data

Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...

متن کامل

Empirical Likelihood Approach and its Application on Survival Analysis

A number of nonparametric methods exist when studying the population and its parameters in the situation when the distribution is unknown. Some of them such as "resampling bootstrap method" are based on resampling from an initial sample. In this article empirical likelihood approach is introduced as a nonparametric method for more efficient use of auxiliary information to construct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Statistical Computation and Simulation

سال: 2022

ISSN: ['1026-7778', '1563-5163', '0094-9655']

DOI: https://doi.org/10.1080/00949655.2022.2148254